An efficient Gaussian kernel optimization based on centered kernel polarization criterion

نویسندگان

  • Meng Tian
  • Wenjian Wang
چکیده

The success of kernel-based learning methods is heavily dependent on the choice of a kernel function and proper setting of its parameters. In this paper, we optimize the Gaussian kernel for binary-class problems by using centered kernel polarization criterion. This criterion is an extension of kernel polarization and a simplified style of centered kernel alignment. Compared with formulated kernel polarization criterion, the proposed criterion has a defined geometrical significance, and it can locate the global optimal point with less influence of threshold selection. Furthermore, the approximate criterion function can be proved to have a determined global minimum point by adopting the Euler–Maclaurin formula under weaker conditions. In addition, taking the preservation of within-class local structure into account, we present an evaluation criterion named local multiclass centered kernel polarization in multiclass classification scenario. Comparative experiments are conducted on some benchmark examples with three Gaussian kernel based learning methods and the results well demonstrate the effectiveness and efficiency of the proposed quality measures. 2015 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ISAR Image Improvement Using STFT Kernel Width Optimization Based On Minimum Entropy Criterion

Nowadays, Radar systems have many applications and radar imaging is one of the most important of these applications. Inverse Synthetic Aperture Radar (ISAR) is used to form an image from moving targets. Conventional methods use Fourier transform to retrieve Doppler information. However, because of maneuvering of the target, the Doppler spectrum becomes time-varying and the image is blurred. Joi...

متن کامل

Sparse Regression Modelling Using an Incremental Weighted Optimization Method Based on Boosting with Correlation Criterion

ABSTRACT A novel technique is presented to construct sparse Gaussian regression models. Unlike most kernel regression modelling methods, which restrict kernel means to the training input data and use a fixed common variance for all the regressors, the proposed technique can tune the mean vector and diagonal covariance matrix of individual Gaussian regressor to best fit the training data based o...

متن کامل

Discrete mixtures of kernels for Kriging-based optimization

Kriging-based exploration strategies often rely on a single Ordinary Kriging model which parametric covariance kernel is selected a priori or on the basis of an initial data set. Since choosing an unadapted kernel can radically harm the results, we wish to reduce the risk of model misspecification. Here we consider the simultaneous use of multiple kernels within Kriging. We give the equations o...

متن کامل

Training Discriminative HMM by Optimal Allocation of Gaussian Kernels

We propose to train Hidden Markov Model (HMM) by allocating Gaussian kernels non-uniformly across states so as to optimize a selected discriminative training criterion. The optimal kernel allocation problem is first formulated based upon a non-discriminative, Maximum Likelihood (ML) criterion and then generalized to incorporate discriminative ones. An effective kernel exchange algorithm is deri...

متن کامل

Gaussian kernel optimization for pattern classification

This paper presents a novel algorithm to optimize the Gaussian kernel for pattern classification tasks, where it is desirable to have well-separated samples in the kernel feature space. We propose to optimize the Gaussian kernel parameters by maximizing a classical class separability criterion, and the problem is solved through a quasi-Newton algorithm by making use of a recently proposed decom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 322  شماره 

صفحات  -

تاریخ انتشار 2015